Discriminative Factor Alignment across Heterogeneous Feature Space
نویسندگان
چکیده
Transfer learning as a new machine learning paradigm has gained increasing attention lately. In situations where the training data in a target domain are not sufficient to learn predictive models effectively, transfer learning leverages auxiliary source data from related domains for learning. While most of the existing works in this area are only focused on using the source data with the same representational structure as the target data, in this paper, we push this boundary further by extending transfer between text and images. We integrate documents , tags and images to build a heterogeneous transfer learning factor alignment model and apply it to improve the performance of tag recommendation. Many algorithms for tag recommendation have been proposed, but many of them have problem; the algorithm may not perform well under cold start conditions or for items from the long tail of the tag frequency distribution. However, with the help of documents, our algorithm handles these problems and generally outperforms other tag recommendation methods, especially the nontransfer factor alignment model.
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملAdversarial Discriminative Heterogeneous Face Recognition
The gap between sensing patterns of different face modalities remains a challenging problem in heterogeneous face recognition (HFR). This paper proposes an adversarial discriminative feature learning framework to close the sensing gap via adversarial learning on both raw-pixel space and compact feature space. This framework integrates cross-spectral face hallucination and discriminative feature...
متن کاملHeterogeneous Domain Adaptation Using Manifold Alignment
We propose a manifold alignment based approach for heterogeneous domain adaptation. A key aspect of this approach is to construct mappings to link different feature spaces in order to transfer knowledge across domains. The new approach can reuse labeled data from multiple source domains in a target domain even in the case when the input domains do not share any common features or instances. As ...
متن کاملLearning Discriminative Representations for Semantic Cross Media Retrieval
Heterogeneous gap among different modalities emerges as one of the critical issues in modern AI problems. Unlike traditional uni-modal cases, where raw features are extracted and directly measured, the heterogeneous nature of cross modal tasks requires the intrinsic semantic representation to be compared in a unified framework. This paper studies the learning of different representations that c...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کامل